
Speeding Up Singular Value Thresholding For Matrix

Completion

Rishabh Ranawat

New York University

Abstract

Low rank matrix completion methods are extremely relevant and effective
in scenarios where large matrices (datasets/real world data represented as
a matrix) exist but are generally sparse due to missing entires. There has
been significant progress made in the domain of matrix completion that has
enabled the development of recommender systems on a large scale. One of
the common approaches to matrix completion is to reduce it a nuclear norm
minimization problem. There have been a number of effective algorithms
proposed to tackle such problems. In this paper, we discuss a Singular Value
Thresholding (SVT) algorithm for matrix completion proposed by Cai et. al.
[1]. The SVT is a simple first-order and an easy to implement algorithm that
is efficient at addressing problems that have low rank solutions. The algo-
rithm is iterative and produces a sequence of matrices {Xk, Y k} and at each
step, mainly performs a shrinkage based on the singular values. Further, we
review the theory behind the algorithm and present some numerical results
that back the theorems developed in the original paper. Finally, we try to do
some exploration by observing specific variations of the algorithm. In par-
ticular, SVT computes the singular values of an iterate matrix per iteration.
The authors use the SVD implementation from PROPACK (a FOTRAN
library) []. We explore how using other K-SVD algorithms can affect the effi-
ciency/time complexity of the algorithm. We evaluate the performance of the
algorithm and its different SVD variants on 3 different datasets - (E1) ran-
domly generated matrices (E2) matrix of Geodesic distances between cities
(E3) student learning datasets.

Keywords: Optimization, Singular Value Decomposition, Matrix
Completion, Nuclear Norm Minimization

Preprint submitted to Journal Name May 13, 2018

1. INTRODUCTION

The matrix completion problem specifically for low rank matrices is visible in
a number of areas such as recommender systems, computer vision, personal-
ized learning, and other areas of engineering. The reason that there do exist
such low rank representations of matrices associated with such problems is
due to the inherent nature of the data collected. For instance, in the case
of the movie recommendations. We know that a user’s preferences are only
dependent on a few factors and that intuitively hints at the fact that such
a matrix would be low rank. An example is the geodesic distance matrix.
Such a matrix is known to be low rank and an accurate low-rank represen-
tation can be computed efficiently. An area that I explore in this paper, is
personalized learning. Specifically, we know from literature that there exists
an innate pattern to student learning. So, a matrix consists of students vs.
scores on a sequence of related questions could potentially be a low rank
matrix.

In this paper, I review the Singular Value Thresholding Algorithm for Ma-
trix Completion proposed by Cai et. al [1]. The SVT algorithm is a simple
first order method that is straightforward to implement and primarily uses
the idea of soft thresholding to solve the matrix completion problem. The
algorithm produces a sequence of matrices {Xk, Y k} and the singular values
of Y k are shrunk using a shrinkage operator. The problem that this iterative
algorithm tries to solve is that of minimizing the nuclear norm. This stems
from the fact that the shrinkage operator (that we will introduce) is a prox-
imity operator of the nuclear norm of a matrix. We present the algorithm, go
through the theory and present some numerical analysis to make sure that
the theory holds.

As we will observe the complexity of the SVT algorithm is dependent on
the complexity of computing singular values of a matrix. In the paper, the
authors use PROPACK (a FORTRAN library) to calculate k-SVDs. I could
not get PROPACK to run on my machine (the last release was in 2007) and
so I cannot comment on the efficiency of that implementation. However, we
explore if other numerical ways of computing the SVD of a matrix would
have an effect on two key aspects - time and accuracy. We experiment with
MATLAB’s svds function, block lanczos algorithm, fast randomized k-SVD.
We provide brief descriptions of these algorithms (as the details are not really

2

the main point of this paper) and present the results with some qualitative
and quantitative analysis.

The paper is structured as follows: section 2 A review of the Singular Value
Thresholding Algorithm (SVT). This includes going over the theory, provid-
ing a basic implementation of the algorithm and presenting some numerical
results. Next, section 3 A summary of the three k-SVD methods - (i) Block
Lanczos (ii) Randomized k-SVD (iii) Faster Randomized k-SVD. Finally,
section 4 - Evaluation on the three problems - 4.1 randomly generated ma-
trices 4.2 matrix of Geodesic distances between cities 4.3 student learning
datasets.

2. SINGULAR VALUE THRESHOLDING FOR MATRIX COM-
PLETION

In the following sections, we describe Singular Value Thresholding algorithm
in relation to matrix completion in detail.

2.1. Nuclear Norm Minimization Problem

The SVT algorithm is for approximately solving the nuclear norm minimiza-
tion problem. These problems take the following form:

minimize ||X||∗
subject to A(X) = b

(1)

where, A is a linear operator acting on the space of m × n matrices and
b ∈ Rp. This algorithm is works well for problems that are at an extremely
large scales and the solution has low rank. The SVT algorithm is formulated
and presented in the case of matrix completion.

Let PΩ be the orthogonal projector onto the span of matrices vanishing out-
side of Ω so that the (i, j)th component of PΩ(X) is equal to Xij if (i, j) ∈ Ω
and 0 otherwise. So, now we can state the matrix completion problem as the
following:

minimize ||X||∗
subject to PΩ(X) = PΩ(M)

(2)

where we are trying to find the optimal X ∈ Rm×n.

3

2.2. SVT Algorithm

Now, that we have expressed the matrix completion problem as a minimiza-
tion problem, we present the SVT algorithm. Before we can completely state
algorithm we first need to discuss the singular value shrinkage operator.

Singular value shrinkage operator: We know that the singular value
decomposition of a matrix X ∈ Rm×n 1 of rank r is given by the following:

X = UΣV T

The algorithm uses a soft-thresholding operator Dτ , where

Dτ (X) = UDτ (Σ)V T

and
Dτ (Σ) = Σ = diag({σi − τ})+

Here, what the operator essentially does is that it shrinks the singular values
that are lower than τ to 0. This is similar to the soft-thresholding operator.
The major implication that this is has is on the rank of the matrix X. For
instance, for an extremely large value of τ , the matrix Dτ (X) would have a
much lower rank than the matrix X.

Dτ as the proximity operator associated with the nuclear norm:
First, let’s define a proximity operator. For any function f that is closed,
proper and convex, its proximity operator is defined as the following 2:

P η
f (Y) = argmin

X∈H

1

2η
||X − Y ||2 + f(X) (3)

where, H is any Hilbert space with the inner product 〈., .〉 and the induced
norm ||.||.

In our case, in order for the singular value shrinkage operator to be the
proximity operator the following condition must be satisfied:

Dτ (Y) = argmin
X∈Rm×n

1

2
||X − Y ||2F + τ ||X||∗

1U and V are respectively m× r and n× r with orthonormal columns.
2Following CMU CVX notes - https://www.cs.cmu.edu/~suvrit/teach/yaoliang_

proximity.pdf

4

https://www.cs.cmu.edu/~suvrit/teach/yaoliang_proximity.pdf
https://www.cs.cmu.edu/~suvrit/teach/yaoliang_proximity.pdf

In order to prove the above statement, we first need to show the following
lemma.

Theorem 2.1. ∀τ ≥ 0, Y ∈ Rm×nDτ (Y) obeys:

Dτ (Y) = argmin
X

1

2
||X − Y ||2F + τ ||X||∗

Proof. First, we write the function on the RHS as the following:

h0(X) = τ ||X||∗ +
1

2
||X − Y ||2F

Now, we can clearly see that this function is strictly convex and so we can
be sure that it has a unique minimizer. In order to prove this theorem we
need to show that Dτ (Y) is equal to this minimizer.

Let’s say that X̃ minimizes h0(X). We know from the properties of a strictly
convex function that X̃ minimizes h0(X) if and only if, 0 ∈ ∂h0(X̃) 3

This suggests the following:

0 ∈ X̃ − Y + τ∂||X̃||∗ (4)

Further, it has been shown in Lemma Appendix A.1 that

∂||X||∗ = {UV T +W : W ∈ Rm×n, UTW = 0,WV = 0, ||W ||2 ≤ 1} (5)

Now, let X̃ := Dτ (Y). We can decompose Y = U0Σ0V
∗

0 + U1Σ1V
T

1 , where
U0, V0 and U1, V1 are the singular vectors associated with singular values
greater than τ and smaller than τ respectively. Substituting this notation in
the definition:

X̃ = U0(Σ0 − τI)V T
0

3We say that Z is a subgradient of a convex function f : Rm×n → R at X0, if

f(X) ≥ f(X0) + 〈Z,X −X0〉

5

So, we can reach the following statement

Y − X̃ = U0Σ0V
T

0 + U1Σ1V
T

1 − U0Σ0V
T

0 − τU0V
T

0

= U1Σ1V
T

1 − τU0V
T

0

= τ(U0V
T

0 +W)

where, W = τ−1U1Σ1V
T

1 . However, we know from Lemma Appendix A.1
that UT

0 W = 0. Further, we know that Σ1 is a diagonal matrix with the
singular values < τ . This means that ||W ||2 ≤ 1 because we have the inverse
τ term there. This suggests that Y − X̃ ∈ ∂||X||∗. Well, this shows that
4 holds. Hence, we can be sure that the shrinkage operator is a proximity
operator of the nuclear norm.

Okay, so what can we do with this result? We’ll get to that question after
stating the SVT algorithm.

Algorithm: Now, we can state the SVT algorithm. First, we select a value
of τ > 0 and a sequence of {δk} of positive step sizes. We start with an
initial value of the Y iterate and perform the following steps iteratively for
kmax iterations:

Xk = Dτ (Y k−1)

Y k = Y k−1 + δkPΩ(M −Xk)
(6)

The stopping criterion is the precision forced on the relative residual error.
It can be stated as the following:

||PΩ(Xk −M)||F/||PωM ||F ≤ ε

The L.H.S. is the relative residual error.

2.3. Convergence Analysis for Matrix Completion

Now, we will show that by following 6, the sequence {Xk} from 6 converges
to a unique solution to the following minimization problem:

minimize τ ||X||∗ +
1

2
||X||2F

subject to PΩ(X) = PΩ(M)
(7)

6

Further, we can observe how this problem is closely related to 2. So, if we can
show that the SVT algorithm converges to a unique solution to this problem,
then in some sense we have shown that the SVT approximately solves the
matrix completion problem. This is also because here fτ is closely related
to the proximity operator of the nuclear norm (which we showed was the
shrinkage operator).

First, we need to establish the strong convexity of fτ = τ ||X||∗ + 1
2
||X||2F .

Consider the following:

Lemma 2.2. Let Z ∈ ∂fτ (X) and Z ′ ∈ ∂fτ (X ′). Then,

〈Z − Z ′, X −X ′〉 ≥ ||X −X ′||2F (8)

Proof. We have the result that Z = τZ0 + Z iff Z = τZ0 + X, wehere
Z0 ∈ ∂||X||∗.

〈Z − Z ′, X −X ′〉 = 〈τZ0 +X − τZ ′0 +X ′, X −X ′〉

= τZ0X − τZ ′0X − τZ0X
′ + τZ ′0X

′ +XX − 2XX ′ +X ′X ′

This can be written as the following using the definition of Frobenius norm
and matrix inner product properties.

= τ〈Z0 − Z ′0, X −X ′〉+ ||X −X ′||2F

Now, to prove the statement of the lemma if we can show that 〈Z0−Z ′0, X−
X ′〉 ≥ 0 holds then that is sufficient. From lemma Appendix A.1, we
know that ||Z0|| ≤ 1 and 〈Z0, X〉 = ||X||∗. We can use these to derive the
following inequality:

|〈Z0, X
′〉| ≤ ||Z0||2||X ′||∗ ≤ ||X ′||∗

Similarly, we end up getting:

|〈Z ′0, X〉| ≤ ||X||∗
Finally, we can draw the following conclusion:

〈Z0 − Z ′0, X −X ′〉 = 〈Z0, X〉+ 〈Z ′0, X ′〉 − 〈Z0, X
′〉 − 〈Z ′0, X〉

7

= ||X||∗ + ||X ′||∗ − 〈Z0, X
′〉 − 〈Z ′0, X〉 ≥ 0

Hence, we have proved that 〈Z − Z ′, X −X ′〉 ≥ ||X −X ′||2F .

We need some additional background. We refer to [2] to make the link
between the above stated lemma and the final convergence statement.

Theorem 2.3. Let f be a differentiable function defined on a nonempty
closed convex set Q ∈ Rn, and let ∇f be Lipschitz continuous on Q with
Lipschitz constant L, that is,

||∇f(y)−∇f(x)||2 ≤ L||y − x||2
for x, y ∈ Q. Given that we are trying minimize f , assume that there does
exist a solution. In this case, the sequence {xk} generated by SVT (there is
a more general way the paper states but SVT is part of that generalization)
with stepsize δk satisfying

0 < ε < δk ≤ 2/(L+ 2γ), ε, γ > 0

then if f is pseudo convex on Q, then xk minimizes f as required. [2]

Thus, the following convergence theorem is reached using the Theorem 2.3.

Theorem 2.4. The sequence {Xk} obtained via 6 converges to the unique
solution of 7 provided that 0 < infδk ≤ supδk < 2.

Essentially, what the theorem is states is that given that we have proved
strong convexity of the function fτ (X), we know that the aforementioned
minimization problem will converge to the unique solution of the problem if
we follow the SVT algorithm iteration.

2.4. Key Features of SVT

There are two main features of using SVT:

• Low Rank Property The iterates of X i.e., {Xk} are generally low-
rank. This result has not been proven analytically, but can be easily
observed empirically. The primary reason for this behavior is the sin-
gular value shrinkage operator. By the nature of the algorithm, larger
the τ is better suited for the algorithm. However, larger τ implies that
a number of smaller singular values are going to get dropped off due to
the shrinkage operator.

8

• Sparsity Another important characteristic is the fact that Y k is sparse
or rather it’s sparsity is directly dependent on Ω (or the number of
known entries). This suggests that in implementation we do not have
to store a dense representation of the matrix.

2.5. Implementation of SVT

The following is the most basic direct implementation of the SVT algorithm.
Following is the pseudo code for the SVT algorithm:

Algorithm 1 SVT Algorithm

1: procedure SVT(Matrix, Ω, τ , δ, ε, maxiters)
2: Yk = zeros(size(Matrix))
3: for 1 → maxiters
4: U, Σ, V = svd(Yk);
5: Σ = Dτ (Σ)
6: Xk = UΣV T

7: if Relative Residual Error < ε: return Xk

8: Y kij =

{
0 if(i, j) /∈ Ω

Y kij + δ(Matrixij −Xkij) if(i, j) ∈ Ω

9: end
10: return Xk

The MATLAB implementation of the above algorithm can be found in Ap-
pendix B. The parameters above are set specific to the situation. We will
discuss these in detail in the following section when we use the algorithm on
different examples.

2.6. Numerical Experiments To Show Convergence

Theorem 2.4 proves that the SVT algorithm is gauranteed to converge
for the nuclear norm minimization problem (actually, the proximity operator
minimization) given that the step size obeys the stated bound. In this section,
we numerically test this theorem. We run the SVT algorithm on a randomly
generated 1000× 1000 matrix with rank 10 for a maximum of 100 iterations.
The stopping criterion is when the relative residual error is less than ε =
1e− 4. We test the theorem for a different set of fixed δ = 1 : 6. The size of
Ω was approximately 30% of the total number of elements. The MATLAB

9

listings to run these experiments is provided in Appendix C. The following
results were obtained:

Figure 1: Testing the Convergence Theorem with varying δ for a random 1000 by 1000
matrix with rank 10 with a maximum number of iterations = 100

To summarize the results (in case the figure is too small): for δ ≤ 5, the
iteration converged in less than 100 iterations. For δ = 6, it didn’t converge.
This shows that the algorithm is extremely efficient and converges rather
quickly. The time taken was reasonable (given in this version of the code we
generate all SVDs at every step). One thing to note is that the bound that
Theorem 2.4 provides seems to be a sufficient condition and not necessary

10

or maybe it depends on how precise you expect your results to be. In this
case, ε = 1e − 4 and so maybe the iterations where we used a δ > 2, also
converged.
To summarize, we can be sure that the SVT algorithm works well as far as
the minimization problem 2 is concerned. The theorem provides an analyti-
cal bound and the numerical results that were obtained seem to concur with
the theory.

Now we explore a different aspect of the algorithm and that is the computa-
tion of SVDs in the iterations.

3. SUMMARY OF k-SVD ALGORITHMS

As we have noted, in Algorithm 1 version in every iteration, we are comput-
ing all possible Singular Values of the Y k iterate. This is inefficient and we
can definitely improve on it. This is the primary motivation of this particular
section.

3.1. Implementation Modification to SVT

The idea here is that we only need to compute the singular values that
are greater than the threshold τ cause anyway the other singular values are
shrunk to 0. However, there still exists a problem - how do we know which
singular values are greater than τ and then only compute those? In order
to answer this question we take an incremental approach (the authors also
propose such an approach [1]). The following is the pseudo code for such an
implementation.

11

Algorithm 2 SVT Algorithm with kSVD

1: procedure SVT(Matrix, Ω, τ , δ, ε, k0, l, maxiters)
2: rk = 0
3: Yk = k0× delta(PΩ(Matrix));
4: for 1 → maxiters
5: sk = rk + 1
6: U, Σ, V = kSVD(Yk, k)
7: while(cond)

8: U, Σ, V = ksvd(Yk, k)
9: sings = diag(Σ);

10: sk = sk + l;
11: cond = sings(sk-l) > τ

12: end
13: rk = max{j : σj > τ}
14: Xk =

∑rk
j=1(σj − τ)UjVj

15: if Relative Residual Error < ε: return Xk

16: Y kij =

{
0 if(i, j) /∈ Ω

Y kij + δ(Matrixij −Xkij) if(i, j) ∈ Ω

17: end
18: return Xk

As you may have noticed, there are two additional parameters. l is the incre-
mental step for calculating the number of singular values and k0 is used for
initialization of the Y k iterate (details can be found in the MATLAB listing).
The MATLAB listing for the above pseudo code is provided Appendix D.
We try to answer the question - What effect does using different k-SVD
algorithms in the SVT iteration have on the matrix completion problem?. In
order to answer this question we review existing implementations of some
k-SVD algorithms and implement them in the SVT context. In the following
sections (3.2 3.3, 3.4), we briefly describe 3 approaches to computing k −
SV D. We just give a brief overview of the algorithm and their run time
complexity. We provide the appropriate citations to the papers that propose
these algorithms.

3.2. MATLAB svds
MATLAB offers an implementation of the K-SVD algorithm. FMATLAB
does under the hood to calculate k− SV Ds. It computes a given number of

12

singular vectors via ARPACK and it is actually just a wrapper for an eigs
call on the ”squarized” matrix 4. This would be a good baseline to start off
with.

1 S = svds(A,K,'largest') computes K singular values based ...
on SIGMA:

2 'largest' − compute K largest singular values. This is the ...
default.

3.3. SVT with Block Lanczos SVD (SVT-BL)

This is considered as the standard solution to the k-SVD problem and is the
Block Lanczos Iteration algorithm [3].

Algorithm 3 Block Lanczos Algorithm

1: procedure SVD-BL(A, k)
2: s = k +O(1) (oversampling parameter)
3: q = O(log n

ε
) maxiterations

4: S = Sketch(n, s)
5: C = AS
6: K = [C, (AAT)C, . . . , (AAT)q−1C]
7: [U, S, V] = svd(Q′A)
8: U = QU

Notation: Let A ∈ Rm×n be the given matrix, S ∈ Rn×s be a sketching ma-
trix, e.g. random projection or column selection matrix, and C = AS ∈ Rm×s

be a sketch of A. The size of C is much smaller than A, but C preserves some
important properties of A.

The above algorithm runs is O(mnk) time, however, it takes up a lot of
memory. Thus, for large scale purposes this might not be the best option.

3.4. SVT with Randomized k-SVD (SVT-R)

Another class of algorithms are randomized algorithms for k-SVD approxi-
mation. A simple version is the following: [3]

4This was someone on stackexchange. I could not find any official documentation with
regards to this

13

Algorithm 4 Randomized k-SVD

1: procedure SVD-Rand(A, k)
2: s = O(k

ε
)

3: S = Sketch(n, s)
4: C = AS
5: [Q,R] = qr(C)
6: [U, S, V] = svds(Q′A, k)
7: U = QU

The motivation behind this algorithm is that if C = AS ∈ Rm×s is a good
sketch of A, the column space of C should roughly contain the columns of
Ak this is the low rank approximation property. There is a theoretical bound
provided for this here []. In this case, the time complexity of the algorithm
is O(nnz(A)k/ε).

4. EVALUATION

Now, we have the main SVT algorithm sketched out and a few variants of it
we evaluate these on 3 sets of problems. The first objective of this evaluation
is to observe whether or not there algorithm performs efficiently and secondly,
does using different k-SVD algorithms provide any benefit.

4.1. SVT for Random Matrix (E1)

In this section, we run the SVT algorithm on a random 50 by 50 matrix with
rank 3. We set the parameters as the following: τ is 100 times the highest
singular value of the matrix and δk = 2 i.e., fixed step size. Further, the max
number of iterations were about 200 and the tolerance level was 1e− 4.The
size of Ω was approximately 30% of the total number of elements.
The following results were obtained:

14

Figure 2: Rank vs. Iterations for a random 50 by 50 matrix with rank 3

Figure 3: Relative Residual Error vs. Iteration Count for a random 50 by 50 matrix with
rank 3

15

Observations The following were observed:

• The plots seem to concur with theory in that as the number of iterations
increase, the rank also increases. Further, we can observe how the
relative residual error drops fast as the number of iterations increase.
This is an indication of the fact that a low rank matrix representation
exists and can be approximated with a relatively low error.

• On comparing results with the results that the authors get, we can be
sure that our implementation works correctly.

• As far as time is concerned, the following average (over 3 trials) re-
sults were obtained: 1.50s(MATLAB svds), 0.4830s (SVT-BL) 4.8646s
(SVT-R). This suggests that SVT-BL performs the best as far as time
is concerned.

• The algorithm seems to converge although we cut it out at 200 max-
imum iterations. However, one can observe that as the number of
iterations increase the difference between the three SVD methods de-
creases.

4.2. SVT for Cities Dataset (E2)

The authors use this algorithm to approximate a matrix of distances. Here,
we try to reproduce those results by implementing it ourselves. The dataset
has been provided by at reference. This dataset is essentially a 312 by 312
matrix where, the ijth entry is the distance between the ith and the jth

city. There have been numerical tests that clearly suggest that such geodesic
matrices can be approximated as low rank matrices. It has been observed
that a 3 low rank approximation of such a matrix gives a pretty good result
i.e., ||M3||F

||M ||F
= 0.9933. We use the same parameters as the authors τ = 1e+ 7

and δ = 2. The size of Ω was approximately 30% of the total number of
elements.The following results were obtained:

16

Figure 4: Rank vs. Iterations for the cities dataset

Figure 5: Relative Residual Error vs. Iteration Count for the cities dataset

Observations: Following are some of the observations:

17

• These results match our intuition that a reasonably accurate low rank
approximation of the a distance matrix does exist. As we can see all
three algorithms seem to converge. The final relative residual error was
approximate 7.84e-02 at the 400th iteration.

• As far as time is concerned, the following average (over 3 trials) results
were obtained: 6.43s (MATLAB svds), 5.34s (SVT-BL) 104.18s (SVT-
R).

4.3. SVT for Education (E3)

In this section, I describe the applications of the SVT algorithm in the ed-
ucational domain. The primary idea as stated earlier is that there exists
an underlying structure to the way a student learns and given the micro-
scopic level at which today online platforms assess student learning, there is
a massive amount of granular data available. In this section, I explore the
application of matrix completion to educational data using the SVT algo-
rithm.

The ASSISTments dataset consists of data collected on a personalized learn-
ing system [4]. This dataset consists of a student-response records and var-
ious attributes as far as questions, types of questions, outcomes, number of
attempts and so on are concerned. In this part, we use the SVT algorithm to
find a low rank matrix representation of a matrix that consists of the number
of attempts a student takes to get a question correct. The matrix looks like
the following:

NStudents




1 2 0 . . . 4 1
0 0 1 . . . 1 0
.
.
.
0 4 2 . . 3 1 1



QQuestions︷ ︸︸ ︷

where, the ijth entry is the number of attempts a student took to get a
question right. The dataset originally consists of 4200 students and 29000
questions. However, my machine cannot hold that big a matrix in mem-
ory. So, I randomly sample a matrix with 100 students and 100 questions.

18

Here, I am essentially trying to observe if there exists a low rank repre-
sentation and if there does to what extent can we approximate it (i.e., re-
duce the relative residual error). The parameters used in this case were
τ = 100×max(SV D(matrix)) and δ = 2. The size of Ω was approximately
30% of the total number of elements.

The following results were obtained:

Figure 6: Rank vs. Iterations for the ASSIST dataset

19

Figure 7: Relative Residual Error vs. Iteration Count for the ASSIST dataset

Observations: Following are some of the observations on the experiments
for this dataset:

• The relative residual error is relatively high compared to our previous
examples after 400 iterations. One of the reasons is probably that the
rank of the matrix needs to be higher than 4 for a better approximation.
This could be explored further if there was more compute power and
one could let the experiment run to convergence.

• There is a significant discrepancy in the rank of the matrix and the
number of iterations between different methods of computing SVD.
This might be an indication of compounding error that gets magnified
as the number of approximations increases. It is difficult to speculate as
to which SVD performs the worst. However, assuming that MATLAB’s
version is accurate enough we might speculate that there could be a
much better algorithm than the randomized version that we utilized.

• As far as time is concerned, the following average (over 3 trials) results
were obtained: 4.84s(MATLAB svds), 2.62s (SVT-BL), 10.86s (SVT-
R).

20

5. CONCLUSION

To conclude, in this paper we reviewed the Singular Value Thresholding Al-
gorithm for Matrix Completion in detail. We presented the algorithm, con-
vergence analysis, MATLAB implementation and numerical results to show
its convergence. Further, we tried to experiment with different k − SV D
algorithms to see if they had any significant effect on the performance of
SVT. In order to do so, we looked at a few different algorithms such as the
Block-Lanczos iteration algorithm, the randomized k − SV D algorithm and
of course, MATLAB’s inbuilt svds algorithm. Overall, the SVT algorithm is
extremely efficient at approximating low rank matrices and can be used in a
variety of applications. We also observed that the cities-distance matrix is a
low rank matrix and one could obtain an approximate low rank representa-
tion of the education dataset if there was additional compute power available.

Future Work: In this paper, I only worked through the equality constraint
in the optimization formulation. However, this can be easily extended to
inequality constraints. It would be interesting to try examples in that domain
as well. I would like to explore if we could formulate the optimization problem
by taking certain scenarios into context. For instance, for the education
dataset maybe a slight variation to the nuclear norm minimization method
would provide better results. Also, I would like to get into the details of
more k-svd algorithms and do a more in depth analysis of these. There has
been literature that tries to make SVT faster by using rank revealing SVD
methods [5]

6. REFERENCES

[1] J. Cai, E. J. Candès, Z. Shen, A singular value thresholding algorithm for
matrix completion, SIAM Journal on Optimization 20 (2010) 1956–1982.

[2] Y. C. Cheng, On the gradient-projection method for solving the nonsym-
metric linear complementarity problem, Journal of Optimization Theory
and Applications 43 (1984) 527–541.

[3] S. Wang, A practical guide to randomized matrix computations with
MATLAB implementations, CoRR abs/1505.07570 (2015).

[4] D. Selent, T. Patikorn, N. Heffernan, Assistments dataset from multiple
randomized controlled experiments, in: Proceedings of the Third (2016)

21

ACM Conference on Learning @ Scale, L@S ’16, ACM, New York, NY,
USA, 2016, pp. 181–184.

[5] H. Ji, W. Yu, Y. Li, A rank revealing randomized singular value decom-
position (R3SVD) algorithm for low-rank matrix approximations, CoRR
abs/1605.08134 (2016).

22

Appendix A. Additional Lemmas

Lemma Appendix A.1. 5 For some matrix A ∈ Rm×n the

∂||X||∗ = {UV T +W : UTW = 0,WV = 0, ||W ||2 ≤ 1,W ∈ Rm×n}

where A = UΣV T .

Proof. An important feature is that at each A, the subdifferential of the
nuclear norm admits a subspace T upon which it can be decomposed.

T = {UY T+XV T : X ∈ Rm×r, Y ∈ Rn×r}∩{matrices with orthonormal rows}

Now, let ΠT and ΠT ⊥ denote projections upon T and its orthogonal comple-
ment. Now we know that two matrices P and Q are orthogonal if and only
if ∀µ : ||A+ µB|| ≥ ||A||. So, we have the following:

||UY T +XV T + µW ||2 ≥ ||UY T +XV T ||2

Thus, we can be sure that T and W are orthogonal.
Okay, so now we can write the characterization as:

∂||A||∗ = {Z : ΠT (Z) = UV T , ||ΠT ⊥ ≤ 1}

Further, using the dual norm of the nuclear norm:

∂||A||∗ = {Z : 〈Z,A〉 = ||A||∗, ||Z||∗∗ ≤ 1}

Further, we know that the trace norm’s dual is the spectral norm. We get:

∂||A||∗ = {Z : 〈Z,A〉 = ||A||∗, ||Z||2 ≤ 1}

And now, using some linear algebra techniques it can be shown that: 〈Z,A〉 =
||A||∗ and ||Z||2 ≤ 1.
Hence, shown.

5Credit to CMU CVX Notes

23

Appendix B. MATLAB Code for Direct SVT Implementation

1 % Singular Value Thresholding Algorithm for Marix Completion
2 % The following is a direct implementation without ...

worrying about
3 % efficiency.
4 function [Xopt, ranks, relativeResidualError, ...

relativeError, nucs, iters] = ...
5 SVTAlgorithm(matrix, mask, tau, ∆, epsilon, maxiters)
6

7 % records for plotting
8 ranks = [];
9 relativeResidualError = [];

10 relativeError = [];
11 nucs = [];
12

13 % Yˆ{k} matrix initialization
14 Y = zeros(size(matrix));
15

16 for i = 1:maxiters
17 % compute the SVD
18 [U, S, V] = svd(Y);
19

20 % shrinkage Operator. Essentially, the singular values
21 % that are less than tau are shrunk to 0.
22 S = max(S−tau, 0);
23

24 % the Xˆ{k} iterate only comprises is a product of
25 % the left and right singular vectors that ...

correspond to above
26 % threshold singular values.
27 X = U*S*V';
28

29 % orthogonal projection on to omega
30 Y = Y + ∆*mask.*(matrix−X);
31

32 % relative residual error for stopping criterion
33 rse = norm(mask .* (X − matrix), 'fro') / ...

norm(mask .* matrix, 'fro');
34

35 % recording for plots
36 relativeResidualError = [relativeResidualError rse];
37

38 % stopping criterion and debugging messages

24

39 if(rse < epsilon)
40 Xopt = X;
41 fprintf('error %d, iteration %d rank %d \n', ...

rse, i, rank(Xopt))
42 return
43 else
44 fprintf('error %d, iteration %d rank \n', rse, i)
45 end
46 iters = i;
47 end
48 Xopt = X;
49 end

Appendix C. MATLAB Code for Running Convergence Experi-
ments

1 function [] = convergenceExperiements(M , N, r, maxiters)
2 randn('state',1000);
3

4 matrix = randn(M,r)*randn(r,N);
5

6 tau = 1e+3;
7 epsilon = 1e−4;
8

9 omega size = round(0.3*M*N);
10 mask = zeros(size(matrix));
11 pair ixs = randperm(M * N, omega size);
12 row ixs = mod(pair ixs, M) + 1;
13 col ixs = floor((pair ixs − 1) / M) + 1;
14 mask(sub2ind([M, N], row ixs, col ixs)) = 1;
15

16 figure(1);
17 % title(sprintf('Rank vs. Iteration Count for varying ∆...

'));
18 for ∆ = 1:6
19 [Xopt, ranks, relativeResidualError, ...

relativeError, nucs, iters] = ...
SVTAlgorithm(matrix, mask, tau, ∆, epsilon, ...
maxiters);

20 subplot(3, 2, ∆);
21 plot(1:size(relativeResidualError, 2), ...

relativeResidualError);

25

22 title(sprintf('Relative Residual Error vs. ...
Iteartion Count: Delta = %d, iterations = ...
%d', ∆, iters));

23 xlabel('Iteration Count');
24 ylabel('Relative Residual Error');
25 end
26

27

28

29 end

Appendix D. MATLAB Code for Running k-SVD Experiments

1 % The followng is the implementation of the kSVTAlgorithm.
2 function [Xopt, ranks, relativeResidualError, ...

relativeError] = ...
3 kSVTAlgorithm(matrix, mask, tau, ∆, epsilon, maxiters, ...

svdtype)
4

5 % As suggested by the author
6 k0 = ceil(tau/(∆*norm(mask.*matrix, 2)));
7

8 % skip size for singular values
9 l = 5;

10 rk = 0;
11

12 % plotting data
13 ranks = [];
14 relativeResidualError = [];
15 relativeError = [];
16

17 % Y initialization
18 Y = k0*∆*(mask.*matrix);
19

20 for i = 1:maxiters
21 sk = rk + 1;
22

23 % calculate only sk singular values
24 cond = sk < min(size(matrix));
25 while(cond)
26 switch svdtype
27 case 1

26

28 % MATLAB svds
29 [U, S, V] = svds(Y, sk, 'largest');
30 case 2
31 % Block Lanczos Method
32 [U, S, V] = BLSVD(Y, sk, ...

round(log(size(matrix, 2)/epsilon)));
33 case 3
34 % Randomized SVD
35 [U, S, V] = rSVD(Y, sk, ...

round(sk/epsilon));
36 otherwise
37 [U, S, V] = svds(Y, sk, 'largest');
38 end
39 sings = diag(S);
40 sk = sk + l;
41

42 cond = (sings(sk−l) > tau && sk < ...
min(size(matrix)));

43

44 end
45

46 % update rk
47 for j = 1:size(sings, 1)
48 if(sings(j) > tau)
49 rk = j;
50 else
51 break
52 end
53 end
54

55 % update X iterate
56 X = zeros(size(matrix));
57 for j = 1:rk
58 X = X + (sings(j)−tau)*U(:, j)*V(:, j)';
59 end
60

61 % rse calculation
62 rse = norm(mask .* (X − matrix), 'fro') / ...

norm(mask .* matrix, 'fro');
63

64 ranks = [ranks rank(X)];
65 relativeResidualError = [relativeResidualError rse];
66 relativeError = [relativeError norm(X−matrix, ...

'fro')/norm(matrix, 'fro')];
67

27

68 if(rse < epsilon)
69 Xopt = X;
70 fprintf('error %d, iteration %d rank %d \n', ...

rse, i, rank(Xopt))
71 return
72 else
73 fprintf('error %d, iteration %d rank %d \n', ...

rse, i, ranks(i))
74 end
75

76 % orthogonal projection for Y
77 Y = mask.*(Y + ∆*(matrix−X));
78 end
79 Xopt = X;
80 end

28

	INTRODUCTION
	SINGULAR VALUE THRESHOLDING FOR MATRIX COMPLETION
	Nuclear Norm Minimization Problem
	SVT Algorithm
	Convergence Analysis for Matrix Completion
	Key Features of SVT
	Implementation of SVT
	Numerical Experiments To Show Convergence

	SUMMARY OF k-SVD ALGORITHMS
	Implementation Modification to SVT
	MATLAB svds
	SVT with Block Lanczos SVD (SVT-BL)
	SVT with Randomized k-SVD (SVT-R)

	EVALUATION
	SVT for Random Matrix (E1)
	SVT for Cities Dataset (E2)
	SVT for Education (E3)

	CONCLUSION
	REFERENCES
	Additional Lemmas
	MATLAB Code for Direct SVT Implementation
	MATLAB Code for Running Convergence Experiments
	MATLAB Code for Running k-SVD Experiments

